谷歌浏览器插件
订阅小程序
在清言上使用

Modelling high performance potassium-ion battery anode materials with two-dimensional vanadium carbide MXene: the role of surface O- and S-terminations.

Physical chemistry chemical physics : PCCP(2021)

引用 14|浏览4
暂无评分
摘要
Due to the low cost, high element abundance and intrinsic safety, potassium-ion batteries (KIBs) have attracted a surge of interest in recent years. Currently, the key challenge and obstacle to the development of KIBs is to find suitable anode materials with large capacity, high rate capability and small lattice changes during the charge/discharge process. MXenes with excellent energy storage properties are promising anode materials for KIBs and their energy performance largely depends on the surface termination. Here, two-dimensional O- and S-terminated V2C MXene anode materials are designed to model high performance potassium-ion batteries. Using first-principles calculations, the structural properties and potential battery performance in KIBs of V2CO2 and V2CS2 are systematically investigated. The inherent metallic nature, a small diffusion barrier, a low average open circuit voltage, and a high theoretical specific capacity (489.93 mA h g-1 of V2CO2 and 200.24 mA h g-1 of V2CS2) demonstrate that both of them are ideal anode materials for KIBs. Meanwhile, we also investigated the mechanism of the difference in energy performance between V2CO2 and V2CS2 at atomic and electronic levels, in other words, the energy performance difference introduced by surface O- and S-terminations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要