Chemical sectioning fluorescence tomography: high-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution.

Cell reports(2021)

引用 35|浏览21
暂无评分
摘要
A thorough neuroanatomical study of the brain architecture is crucial for understanding its cellular compositions, connections, and working mechanisms. However, the fine- and multiscale features of neuron structures make it challenging for microscopic imaging, as it requires high contrast and high throughput simultaneously. Here, we propose chemical sectioning fluorescence tomography (CSFT) to solve this problem. By chemically switching OFF/ON the fluorescent state of the labeled proteins (FPs), we light only the top layer as thin as submicron for imaging without background interference. Combined with the wide-field fluorescence micro-optical sectioning tomography (fMOST) system, we have shown multicolor CSFT imaging. We also demonstrate mouse whole-brain imaging at the subcellular resolution, as well as the power for quantitative acquisition of synaptic-connection-related pyramidal dendritic spines and axon boutons on the brain-wide scale at the complete single-neuron level. We believe that the CSFT method would greatly facilitate our understanding of the brain-wide neuron networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要