Chrome Extension
WeChat Mini Program
Use on ChatGLM

Supercritical CO2 Extraction of Palladium Oxide from an Aluminosilicate-Supported Catalyst Enhanced by a Combination of Complexing Polymers and Piperidine

MOLECULES(2021)

Cited 3|Views2
No score
Abstract
Precious metals, in particular Pd, have a wide range of applications in industry. Due to their scarcity, precious metals have to be recycled, preferably with green and energy-saving recycling processes. In this article, palladium extraction from an aluminosilicate-supported catalyst, containing about 2 wt% (weight%) of Pd (100% PdO), with supercritical CO2 (scCO(2)) assisted by complexing polymers is described. Two polymers, p(FDA)SH homopolymer and p(FDA-co-DPPS) copolymer (FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate; DPPS: 4-(diphenylphosphino)styrene), were tested with regards to their ability to extract palladium. Both polymers showed relatively low extraction conversions of approximately 18% and 30%, respectively. However, the addition of piperidine as activator for p(FDA-co-DPPS) allowed for an increase in the extraction conversion of up to 60%.
More
Translated text
Key words
extraction,supercritical CO2,palladium recycling,polymers,sustainable chemistry,catalysts
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined