Characterization Of The Pore Structure Of Well Cement Under Carbon Capture And Storage Conditions By An Image-Based Method With A Combination Of Metal Intrusion

ACS OMEGA(2021)

引用 4|浏览0
暂无评分
摘要
To more quantitatively and subtly analyze effects of carbonation on the pore structure of well cement by supercritical CO2 under carbon capture and storage (CCS) conditions, a digital scanning electron microscopy-backscattered electron (SEM-BSE) image analysis with a combination of nontoxic low-melting point metal intrusion is used to characterize the exposed cements to humid supercritical CO2 for 10 and 20 days. The porous area fraction (PAF) and pore size distribution (PSD) profiles obtained by slicing operation are used to describe the pore structure variation along the corrosion direction in a two-dimensional (2D) plane. The results show that the image-based method with the combination of metal intrusion is an effective method for characterizing the layer structure of exposed cement and getting quantitative information about the pore structure. From the surface to the core, the main altered layers in exposed cement for 10 days include the partially leached layer, the carbonated layer, and the calcium hydroxide (CH)-dissolved layer. For the exposed cement for 20 days, the main altered layers include the porous leached layer, the partially leached layer, the carbonated layer, and the carbonated transition layer. The nonporous carbonated layer can effectively block the flow parallel to the corrosion direction, while the porous leached layer can facilitate the flow perpendicular to the corrosion direction. Findings from this study will provide valuable information for understanding the effects of carbonation on the pore structure of well cement under CCS conditions.
更多
查看译文
关键词
Mineral Carbonation,Cement Degradation,Carbon Capture,CO2 Sequestration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要