Novel cobalt-based metal-organic frameworks with superior catalytic performance on N-(4-aminobutyl)-N-ethylisoluminol chemiluminescent reaction

Analytica Chimica Acta(2021)

引用 6|浏览0
暂无评分
摘要
Novel cobalt-based metal-organic frameworks (Co MOFs) were synthesized by a facile “controlled synthesis” strategy. The MOFs displayed superior catalytic performance on the chemiluminescent (CL) reaction between N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and H2O2. UV–vis absorption, CL spectrum, ESR, and radical scavenger experiments were conducted for clarifying the catalytic mechanism of Co MOFs. All results revealed that Co MOFs can accelerate decomposition of H2O2 and production of OH•, O2•−as well as 1O2 radicals. The rapid reaction between these reactive oxygen species and ABEI resulted in the generation of ABEI-ox∗. The excited-state oxidation product emitted a very intensive CL signal with a maximal emission wavelength of 430 nm as it returned to the ground state. To explore their application potential in CL assay, Co MOFs were used as powerful CL reaction catalyst for establishing a very sensitive method for immunoassay of aflatoxin B1. The detection range was 0.05–60 ng mL−1, and the limit of detection was 4.3 pg mL−1. The result for detecting herbal medicine samples demonstrates the acceptable reliability of the Co MOFs-based CL immunoassay. The proof-of-principle work verifies the application potential of Co MOFs on boosting intensive CL signal, and meets the demand for high sensitivity in various bioassay fields.
更多
查看译文
关键词
Metal-organic frameworks,Chemiluminescence,Reactive oxygen species,Catalyst,Immunoassay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要