LncRNA Meg3-mediated regulation of the Smad pathway in atRA-induced cleft palate.

Toxicology letters(2021)

引用 3|浏览4
暂无评分
摘要
Palatal mesenchymal cell proliferation is essential to the process of palatogenesis, and the proliferation of mouse embryonic palate mesenchymal (MEPM) cells is impacted by both all-trans retinoic acid (atRA) and the TGF-β/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been shown to activate TGF-β/Smad signaling and to thereby regulate cell proliferation, differentiation, and related processes. Herein, we found that atRA treatment (100 mg/kg) promoted Meg3 upregulation in MEPM cells, and that such upregulation was linked to the suppression of MEPM cell proliferation in the context of secondary palate fusion on gestational day (GD) 13 and 14. Moreover, the demethylation of specific CpG sites within the lncRNA Meg3 promoter was detected in atRA-treated MEPM cells, likely explaining the observed upregulation of this lncRNA. Smad signaling was also suppressed by atRA treatment in these cells, and RNA immunoprecipitation analyses revealed that Smad2 can directly interact with Meg3 in MEPM cells following atRA treatment. Therefore, we propose a model wherein Meg3 is involved in the suppression of MEPM cell proliferation, functioning at least in part via interacting with the Smad2 protein and thereby suppressing Smad signaling in the context of atRA-induced cleft palate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要