Biomechanical Interfaces Of Corticotomies On Periodontal Tissue Remodeling During Orthodontic Tooth Movement

COATINGS(2021)

Cited 26|Views4
No score
Abstract
Corticotomy is an effective approach in accelerating orthodontic tooth movement (OTM) in clinical treatment. Corticotomy causes regional acceleratory phenomenon (RAP) in the alveolar bone of surgical sites. However, the molecular mechanism of RAP after corticotomy remains unclear. Herein, we established a mouse model to study the biomechanical interfaces of corticotomy-assisted OTM and to investigate the histological responses and underlying cellular mechanism. A total of 144 male C57BL/6 mice were randomly assigned into four groups: corticotomy alone (Corti), sham operation (Sham), corticotomy with tooth movement (Corti + TM), and sham operation with tooth movement (Sham + TM). Nickel-titanium orthodontic springs were applied to trigger tooth movement. Mice were sacrificed on Post-Surgery Day (PSD) 3, 7, 14, 21, and 28 for radiographic, histological, immunohistochemical, and molecular biological analyses. The results reveal that corticotomy significantly promoted alveolar bone turnover and periodontal tissue remodeling. During orthodontic tooth movement, corticotomy significantly promoted osteogenic and proliferative activity, accelerated tooth movement, and eliminated root resorption by upregulating Wnt signal pathway.
More
Translated text
Key words
corticotomy, bone remodeling, orthodontic tooth movement, Wnt signaling pathway, alveolar bone
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined