Molecular Dynamics Study On Sio2 Interfaces Of Nonfiring Solids

JOURNAL OF NANOMATERIALS(2020)

Cited 1|Views9
No score
Abstract
As a sustainable ecosystem, the general firing process for ceramics emits large amounts of CO2 gas; thus in ceramics production, the focus is the nonfiring process; however, the solidification and strengthen mechanism of this nonfiring system, which essentially reacts between surface-activated ceramic particles and a solvent, has not been elucidated to date. The nonfiring process had three steps, i.e., particle surface activate process by grinding process, maintaining the active state until starting nonfiring solidification begins, and nonfiring solidification process. Thus, in this study, the reaction of silica and water was simulated by adapting molecular dynamics based on LAMMPS with ReaxFF potentials. Reproducing the activated silica surface state, three ended models called O model, Si model, and OH model were prepared which indicated ended molecules of each surface. These models and a water molecule as a solvent were bonded in the atomic scale, and the energetic state and mechanical properties were evaluated. A reacted or structured O-H-O bond was reproduced in the nonfiring process in the O-ended model. The bond was a hydrogen bond. A Si-O-Si bond was produced when a Si atom was ended on the interface. The bonded interface was able to tensile. However, the tensile strength was weaker than that of the solid silica model. The nonbonded OH model did not have tensile strength.
More
Translated text
Key words
molecular dynamics,interfaces
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined