Variable Aperture Method Of Ultrasonic Annular Array For The Detection Of Addictive Manufacturing Titanium Alloy

JOURNAL OF SENSORS(2020)

引用 0|浏览0
暂无评分
摘要
The ultrasonic annular array transducer usually has a stronger focusing acoustic field than the linear array and matrix transducer with the same number of array elements, and is more suitable for the detection of large thickness and high attenuation components. However, due to the special arrangement of array elements, the focusing beam cannot be deflected and has a large near field, which limits its application in practical detection. The element parameters of annular array transducer are often designed and analyzed according to the 2-D acoustic field model of a linear array transducer. Therefore, the 3-D acoustic field distribution model of the annular array transducer is established, and the influence of the element parameters on its spatial acoustic field focusing characteristics is analyzed. The design criteria of the array element division mode and element size are proposed, which can avoid the generation of high-energy side lobe and grating lobe, and have good axial acoustic field. Then, the influence of excitation aperture on the energy and size of focal spot at different depths is discussed. The dynamic focusing method with variable aperture of annular array is established, and the C-scan detection experiment is carried out on the addictive manufacturing titanium alloy specimen. The detection results show that the variable aperture method has better central amplitude consistency and imaging accuracy for different depth defects, and has better near surface detection ability than the fixed aperture method.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要