Bioactive three-dimensional silk composite in vitro tumoroid model for high throughput screening of anticancer drugs.

Journal of colloid and interface science(2021)

Cited 7|Views2
No score
Abstract
HYPOTHESIS:Modeling three-dimensional (3D) in vitro culture systems recapitulating spatiotemporal characteristics of native tumor-mass has shown tremendous potential as a pre-clinical tool for drug screening. However, their applications in clinical settings are still limited due to inappropriate recapitulation of tumor topography, culture instability, and poor durability of niche support. EXPERIMENTS:Here, we have fabricated a bio-active silk composite scaffold assimilating tunable silk from Bombyx mori and - arginine-glycine-aspartate (RGD) rich silk from Antheraea assama to provide a better 3D-matrix for breast (MCF 7) and liver (HepG2) tumoroids. Cellular mechanisms underlying physiological adaptations in 3D constructs and subsequent drug responses were compared with conventional monolayer and multicellular spheroid culture. FINDINGS:Silk composite matrix assists prolonged growth and high metabolic activity (Cytochrome P450 reductase) in breast and liver 3D-tumoroids. Enhanced stemness expression (Cell surface adhesion receptor; CD44, Aldehyde dehydrogenase 1) and epithelial-mesenchymal-transition markers (E-cadherin, Vimentin) at transcript and protein levels demonstrate that bio-active matrix-assisted 3D environment augmenting metastatic potential in tumoroids. Together, enhanced secretion of Transforming growth factor β (TGFβ), anchorage-independency, and colony-forming potential of cells in the 3D-tumoroids further corroborates the aggressive behavior of cells. Moreover, the multilayered 3D-tumoroids exhibit decreased sensitivity to some known anticancer drugs (Doxorubicin and Paclitaxel). In conclusion, the bio-active silk composite matrix offers an advantage in developing robust and sustainable 3D tumoroids for a high-throughput drug screening platform.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined