Inferring Solar Differential Rotation Through Normal-Mode Coupling Using Bayesian Statistics

ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES(2021)

引用 5|浏览4
暂无评分
摘要
Normal-mode helioseismic data analysis uses observed solar oscillation spectra to infer perturbations in the solar interior due to global and local-scale flows and structural asphericity. Differential rotation, the dominant global-scale axisymmetric perturbation, has been tightly constrained primarily using measurements of frequency splittings via "a-coefficients." However, the frequency-splitting formalism invokes the approximation that multiplets are isolated. This assumption is inaccurate for modes at high angular degrees. Analyzing eigenfunction corrections, which respect cross-coupling of modes across multiplets, is a more accurate approach. However, applying standard inversion techniques using these cross-spectral measurements yields a-coefficients with a significantly wider spread than the well-constrained results from frequency splittings. In this study, we apply Bayesian statistics to infer a-coefficients due to differential rotation from cross-spectra for both f-modes and p-modes. We demonstrate that this technique works reasonably well for modes with angular degrees l = 50-291. The inferred a(3)-coefficients are found to be within 1 nHz of the frequency-splitting values for l > 200. We also show that the technique fails at l < 50 owing to the insensitivity of the measurement to the perturbation. These results serve to further establish mode-coupling as an important helioseismic technique with which to infer internal structure and dynamics, both axisymmetric (e.g., meridional circulation) and non-axisymmetric perturbations.
更多
查看译文
关键词
Helioseismology, Solar oscillations, Solar differential rotation, Markov chain Monte Carlo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要