Polycomb represses a gene network controlling puberty via modulation of histone demethylase Kdm6b expression

SCIENTIFIC REPORTS(2021)

引用 19|浏览5
暂无评分
摘要
Female puberty is subject to Polycomb Group (PcG)-dependent transcriptional repression. Kiss1 , a puberty-activating gene, is a key target of this silencing mechanism. Using a gain-of-function approach and a systems biology strategy we now show that EED, an essential PcG component, acts in the arcuate nucleus of the hypothalamus to alter the functional organization of a gene network involved in the stimulatory control of puberty. A central node of this network is Kdm6b , which encodes an enzyme that erases the PcG-dependent histone modification H3K27me3. Kiss1 is a first neighbor in the network; genes encoding glutamatergic receptors and potassium channels are second neighbors. By repressing Kdm6b expression, EED increases H3K27me3 abundance at these gene promoters, reducing gene expression throughout a gene network controlling puberty activation. These results indicate that Kdm6b repression is a basic mechanism used by PcG to modulate the biological output of puberty-activating gene networks.
更多
查看译文
关键词
Cellular neuroscience,Epigenetics in the nervous system,Molecular neuroscience,Neuroendocrine diseases,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要