Multi-agent hierarchical policy gradient for Air Combat Tactics emergence via self-play

Engineering Applications of Artificial Intelligence(2021)

引用 34|浏览124
暂无评分
摘要
Air-to-air confrontation has attracted wide attention from artificial intelligence scholars. However, in the complex air combat process, operational strategy selection depends heavily on aviation expert knowledge, which is usually expensive and difficult to obtain. Moreover, it is challenging to select optimal action sequences efficiently and accurately with existing methods, due to the high complexity of action selection when involving hybrid actions, e.g., discrete/continuous actions. In view of this, we propose a novel Multi-Agent Hierarchical Policy Gradient algorithm (MAHPG), which is capable of learning various strategies and transcending expert cognition by adversarial self-play learning. Besides, a hierarchical decision network is adopted to deal with the complicated and hybrid actions. It has a hierarchical decision-making ability similar to humankind, and thus, reduces the action ambiguity efficiently. Extensive experimental results demonstrate that the MAHPG outperforms the state-of-the-art air combat methods in terms of both defense and offense ability. Notably, it is discovered that the MAHPG has the ability of Air Combat Tactics Interplay Adaptation, and new operational strategies emerged that surpass the level of experts.
更多
查看译文
关键词
Air combat,Artificial intelligence,Multi-agent reinforcement learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要