Chrome Extension
WeChat Mini Program
Use on ChatGLM

Electrostatic-Mediated Affinity Tuning Of Lysostaphin Accelerates Bacterial Lysis Kinetics And Enhances In Vivo Efficacy

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2021)

Cited 3|Views4
No score
Abstract
Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.
More
Translated text
Key words
MIC, MRSA, affinity tuning, antibacterial lysin, electrostatic interaction, enzyme kinetics, in vivo efficacy, lysostaphin, minimal inhibitory concentration, protein engineering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined