Estrogen Receptor 1 (ESR1) Agonist Induces Ovarian Differentiation and Aberrant Müllerian Duct Development in the Chinese Soft-shelled Turtle, Pelodiscus sinensi.

Zoological studies(2020)

引用 8|浏览34
暂无评分
摘要
Estrogens play critical roles in ovarian and reproductive organ development, but the molecular signaling pathways in non-mammalian vertebrates are not well understood. Studies of reptiles have indicated that administration of exogenous estrogens during embryonic development causes ovarian differentiation and presumptive male to female sex-reversal. The Chinese soft-shelled turtle, Pelodiscus sinensis, belongs to the family Trionychidae and exhibits genotypic sex determination system with ZZ/ZW sex chromosomes. In order to assess the role of estrogens and their signaling pathway on sex determination and differentiation, P. sinensis eggs were given a single administration of endogenous estrogen,17β-estradiol (E2) or a synthetic estrogen receptor 1 (ESR1) agonist, 4,4',4"-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT) in ovo during gonadal differentiation, and the subsequent effects were examined during a final developmental stage prior to hatching. The administration of both E2 and PPT induced ovarian differentiation in genetic male embryos. Intriguingly, PPT but not E2 induced the Müllerian duct enlargement and aberrant glandular development. These data suggest that ovarian differentiation and reproductive tract anomalies induced by the exogenous estrogen exposure act through ESR1 in the Chinese soft-shelled turtles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要