谷歌浏览器插件
订阅小程序
在清言上使用

Upregulation of miR-144-3p protects myocardial function from ischemia–reperfusion injury through inhibition of TMEM16A Ca 2+ -activated chloride channel

Guoxun Yang, Xiao Tang,Ling Tan, Danpeng Nong,Peng Yang, Haien Ning

HUMAN CELL(2021)

引用 9|浏览0
暂无评分
摘要
Myocardial ischemia/reperfusion injury (MIRI) is a major cause of acute cardiac injury that is associated with high morbidity and mortality, and for which specific treatments are lacking. In this study, we investigated the underlying molecular mechanism of miR-144-3p in the pathological process of MIRI. A mouse I/R injury model and H9c2 cardiomyocyte hypoxia/reoxygenation (H/R) model were used to simulate the ischemia/reperfusion process in vivo and in vitro, respectively, and the relative expression and regulatory effect of miR-144-3p were determined. The target of miR-144-3p was also verified by a luciferase reporter assay. We found that miR-144-3p was significantly downregulated in mouse myocardium subjected to I/R and cardiomyocytes subjected to H/R. Upregulation of miR-144-3p significantly attenuated MIRI in vivo and in vitro. A Ca 2+ -activated chloride channel—TMEM16A (ANO1)—was identified as a target gene of miR-144-3p through bioinformatic analysis. The interaction between miR-144-3p and the 3ʹ-untranslated region of ANO1 was confirmed with dual-luciferase reporter assay, RNA immunoprecipitation assay, real-time quantitative polymerase chain reaction, and western blot analysis. Moreover, by targeting ANO1, miR-144-3p inhibited the activation of NLRP3 inflammasome inflammatory signals in myocardial cells. Collectively, the present study provides a novel insight into the role of miR-144-3p in the inhibition of MIRI, suggesting that the miR-144-3p/ANO1 axis may be a putative therapeutic target in myocardial ischemia.
更多
查看译文
关键词
MiR-144-3p,Cardiomyocyte,Ischaemia reperfusion,TMEM16A,NLRP3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要