Updated Reaction Pathway For Dichloramine Decomposition: Formation Of Reactive Nitrogen Species And N-Nitrosodimethylamine

ENVIRONMENTAL SCIENCE & TECHNOLOGY(2021)

Cited 14|Views1
No score
Abstract
The N-nitrosodimethylamine (NDMA) formation pathway in chloraminated drinking water remains unresolved. In pH 7-10 waters amended with 10 mu M total dimethylamine and 800 mu eq Cl-2 center dot L-1 dichloramine (NHCl2), NDMA, nitrous oxide (N2O), dissolved oxygen (DO), NHCl2, and monochloramine (NH2Cl) were kinetically quantified. NHCl2, N2O, and DO profiles indicated that reactive nitrogen species (RNS) formed during NHCl2 decomposition, including nitroxyl/nitroxyl anion (HNO/NO-) and peroxynitrous acid/peroxynitrite anion (ONOOH/ONOO-). Experiments with uric acid (a ONOOH/ONOO(-)scavenger) implicated ONOOH/ONOO- as a central node for NDMA formation, which were further supported by the concomitant N-nitrodimethylamine formation. A kinetic model accurately simulated NHCl2, NH2Cl, NDMA, and DO concentrations and included (1) the unified model of chloramine chemistry revised with HNO as a direct product of NHCl2 hydrolysis; (2) HNO/NO- then reacting with (i) HNO to form N2O, (ii) DO to form ONOOH/ONOO-, or (iii) NHCl2 or NH2Cl to form nitrogen gas; and (3) NDMA formation via ONOOH/ONOO- or their decomposition products reacting with (i) dimethylamine (DMA) and/or (ii) chlorinated unsymmetrical dimethylhydrazine (UDMH-Cl), the product of NHCl2 and DMA. Overall, updated NHCl2 decomposition pathways are proposed, yielding (1) RNS via -NHCl2 -> HNO/NO- -> O-2 ONOOH/ ONOOO- and (2) NDMA via ONOOH/ONOO- -> UDMH-Cl or DMA NDMA.
More
Translated text
Key words
dichloramine decomposition,reactive nitrogen species
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined