Crosstalk between mAChRM3 and β2AR, via acetylcholine PI3/PKC/PBEP1/Raf-1 MEK1/2/ERK1/2 pathway activation, in human bronchial epithelial cells after long-term cigarette smoke exposure

Life Sciences(2018)

引用 0|浏览0
暂无评分
摘要
Background Cigarette smoke extract (CSE) affects the expression of non-neuronal components of cholinergic system in bronchial epithelial cells and, as PEBP1/Raf-mediated MAPK1/2 and ERK1/2 pathway, promotes inflammation and oxidative stress. Aims We studied whether Acetylcholine (ACh) is involved in the mechanism of crosstalk between mAChRM3 and β2Adrenergic receptors (β2AR) promoting, via PI3/PKC/PBEP1/Raf/MEK1/2/ERK1/2 activation, β2AR desensitization, inflammation and, oxidative stress in a bronchial epithelial cell line (16HBE) after long-term exposure to cigarette smoke extract (LECSE). Methods We evaluated mAChRM3 and Choline Acetyltransferase (ChAT) expression, ACh production, PEBP1, ERk1/2, and β2AR phosphorylation, as well as NOX-4, ROS production and IL-8 release in 16HBE after LECSE. The inhibitory activity of Hemicholinium (HCh-3) (a potent choline uptake blocker), LY294002 (a highly selective inhibitor of PI3 kinase), Tiotropium (Spiriva®) (anticholinergic drug) and Olodaterol (β2AR agonist), were tested in 16HBE after LECSE. Results mAChRM3, ChAT, ACh activity, pPEBP1, pβ2AR, pERK1/2, ROS, NOX-4 and IL-8 increased after LECSE in 16HBE LECSE compared to untreated cells. HCh-3 and LY294002 (alone or in combination) as well as Tiotropium (Spiriva®) or Olodaterol (alone or in combination) all reduced the levels of pPEBP1, pβ2AR, pERK1/2, ROS, NOX-4, and IL-8 in 16HBE LECSE compared to untreated cells. Conclusions LECSE promotes ACh production which enhances PI3/PKC/PEBP1/Raf-ERK1/2 pathway activation, heterologous β2AR desensitization, as well as release of inflammatory and oxidative mediators in bronchial epithelial cells. The use of anticholinergic drugs and long-acting β2-agonists, alone or in combination may be dampen these inflammatory mechanisms when used in combination in some epithelial cell types.
更多
查看译文
关键词
Cigarette smoke,Epithelial cells,Oxidative stress,Airway inflammation,Anticholinergic drugs,β2AR agonist
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要