Chrome Extension
WeChat Mini Program
Use on ChatGLM

Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe

Journal of Hazardous Materials(2021)

Cited 68|Views30
No score
Abstract
Ultrasensitive and visual detection of tetracycline antibiotic (TC) residues is of great significance to public health and environmental safety. A novel dual-response ratiometric fluorescent nano-probe (SiQDs-Cit-Eu) has been elaborately tailored for the determination and on-site visual assay of tetracycline, by grafting citric acid and europium (Eu3+) ions onto the surface of silicon quantum dots (SiQDs). The blue-emissive SiQDs (λem = 455 nm) fabricated by a one-step facile method act as both scaffold for coordination with Eu3+ ions and recognition unit for TC owing to the inner filter effect (IFE). The coordinate unsaturated red-fluorescent Eu3+ ions (λem = 617 nm) bond to the surface of SiQDs, serving as the specific recognition element for TC due to the antenna effect. In the presence of TC, the as-synthesized nano-probe exhibits double (λem = 455 and 617 nm) and reverse response signals which are accompanied by a marked color change from blue to purple, and then red, thus achieving ultra-high sensitivity with a detection limit of 7.1 nM and instant visual detection of TC in real samples (milk, honey, lake and river water). Furthermore, smartphone-assisted point-of-care testing platform is also constructed based on nano-probe-immobilized test paper by using the color scanning APP.
More
Translated text
Key words
Silicon quantum dots,Europium(III) ion,Tetracycline,Ratiometric fluorescence,Smartphone sensing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined