Antibacterial and cytotoxic evaluation of copper and zinc oxide nanoparticles as a potential disinfectant material of connections in implant provisional abutments: An in-vitro study.

Archives of oral biology(2021)

引用 21|浏览13
暂无评分
摘要
OBJECTIVE:This study evaluates the antibacterial activity against mono and multispecies bacterial models and the cytotoxic effects of zinc oxide and copper nanoparticles(ZnO-NPs/Cu-NPs) in cell cultures of human gingival fibroblasts(HGFs). DESIGN:The antibacterial activities of ZnO-NPs and Cu-NPs against 4 bacteria species were tested according to their minimum inhibitory concentrations(MICs) and against mature multispecies anaerobic model by spectral confocal laser scanning microscopy. The viabilities and cytotoxic effects of ZnO-NPs and Cu-NPs to HGFs cell cultures were tested by MTT, LDH assays, production of ROS, and the activation of caspase-3. The results were analyzed using one-way ANOVA followed by Tukey tests, considering p < 0.05 as statistically significant. RESULTS:For all strains, MICs of ZnO-NPs and Cu-NPs were in the range of 78.3 μg/mL-3906 μg/mL and 125 μg/mL-625 ug/mL, respectively. In a multispecies model, a significant decrease in the total biomass volume(μ3) was observed in response to exposure to 125 μg/mL of each NPs for which there was bactericidal activity. Significant differences were found between the volumes of viable and nonviable biomass exposed to nanostructures with Cu-NPs compared to ZnO-NPs. Both NPs induced mitochondrial dose-dependent cytotoxicity, ZnO-NPs increases LDH release and intracellular ROS generation. Cu-NPs at a concentration of 50 μg/mL induced production of cleaved caspase-3, activating the apoptotic pathway early and at low doses. CONCLUSIONS:After 24 h, ZnO-NPs are biocompatible between 78-100 μg/mL and Cu-NPs below 50 μg/mL. Antibacterial activity in a monospecies model is strain dependent, and in a multispecies model was a lower doses after 10 min of exposure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要