Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast

BIOTECHNOLOGY FOR BIOFUELS(2021)

引用 6|浏览30
暂无评分
摘要
Consolidated bioprocessing using oleaginous yeast is a promising modality for the economic conversion of plant biomass to fuels and chemicals. However, yeast are not known to produce effective biomass degrading enzymes naturally and this trait is essential for efficient consolidated bioprocessing. We expressed a chimeric cellobiohydrolase I gene in three different oleaginous, industrially relevant yeast: Yarrowia lipolytica, Lipomyces starkeyi, and Saccharomyces cerevisiae to study the biochemical and catalytic properties and biomass deconstruction potential of these recombinant enzymes. Our results showed differences in glycosylation, surface charge, thermal and proteolytic stability, and efficacy of biomass digestion. L. starkeyi was shown to be an inferior active cellulase producer compared to both the Y. lipolytica and S. cerevisiae enzymes, whereas the cellulase expressed in S. cerevisiae displayed the lowest activity against dilute-acid-pretreated corn stover. Comparatively, the chimeric cellobiohydrolase I enzyme expressed in Y. lipolytica was found to have a lower extent of glycosylation, better protease stability, and higher activity against dilute-acid-pretreated corn stover.
更多
查看译文
关键词
Metabolic engineering: chimeric protein,Oleaginous yeast,CBH I,Consolidated bioprocessing,Cellobiohydrolase,Cel7A
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要