Uav Laser Scans Allow Detection Of Morphological Changes In Tree Canopy

REMOTE SENSING(2020)

引用 5|浏览4
暂无评分
摘要
High-resolution laser scans from unmanned aerial vehicles (UAV) provide a highly detailed description of tree structure at the level of fine branches. Apart from ultrahigh spatial resolution, unmanned aerial laser scanning (ULS) can also provide high temporal resolution due to its operability and flexibility during data acquisition. We examined the phenomenon of bending branches of dead trees during one year from ULS multi-temporal data. In a multi-temporal series of three ULS datasets, we detected a synchronized reversible change in the inclination angles of the branches of 43 dead trees in a stand of blue spruce (Picea pungens Engelm.). The observed phenomenon has important consequences for both tree physiology and forest remote sensing (RS). First, the inclination angle of branches plays a crucial role in solar radiation interception and thus influences the total photosynthetic gain. The ability of a tree to change the branch position has important ecophysiological consequences, including better competitiveness across the site. Branch shifting in dead trees could be regarded as evidence of functional mycorrhizal interconnections via roots between live and dead trees. Second, we show that the detected movement results in a significant change in several point cloud metrics often utilized for deriving forest inventory parameters, both in the area-based approach (ABA) and individual tree detection approaches, which can affect the prediction of forest variables. To help quantify its impact, we used point cloud metrics of automatically segmented individual trees to build a generalized linear model to classify trees with and without the observed morphological changes. The model was applied to a validation set and correctly identified 86% of trees that displayed branch movement, as recorded by a human observer. The ULS allows for the study of this phenomenon across large areas, not only at individual tree levels.
更多
查看译文
关键词
ULS, LiDAR, forestry, canopy changes, branch bending, change detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要