Two-Dimensional Simulation Of Barley Growth And Yield Using A Model Integrated With Remote-Controlled Aerial Imagery

REMOTE SENSING(2020)

Cited 4|Views10
No score
Abstract
It is important to be able to predict the yield and monitor the growth conditions of crops in the field to increase productivity. One way to assess field-based geospatial crop productivity is by integrating a crop model with a remote-controlled aerial system (RAS). The objective of this study was to simulate spatiotemporal barley growth and yield based on the development of a crop-modeling system integrated with RAS-based remote sensing images. We performed field experiments to obtain ground truth data and RAS images of crop growth conditions and yields at Chonnam National University (CNU), Gwangju, South Korea in 2018, and at Gyeongsang National University (GNU), Jinju, South Gyeongsang, South Korea in 2018 and 2019. In model calibration, there was no significant difference (p = 0.12) between the simulated barley yields and measured yields, based on a two-sample t-test at CNU in 2018. In model validation, there was no significant difference between simulated yields and measured yields at p = 0.98 and 0.76, according to two-sample t-tests at GNU in 2018 and 2019, respectively. The remote sensing-integrated crop model accurately reproduced geospatial variations in barley yield and growth variables. The results demonstrate that the crop modeling approach is useful for monitoring at-field barley conditions.
More
Translated text
Key words
barley, crop model, integration, RAS, remote sensing, yield
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined