High-heat-flux technologies for the European demo divertor targets: State-of-the-art and a review of the latest testing campaign

J.H. You, E. Visca,T. Barrett, B. Böswirth,F. Crescenzi, F. Domptail,G. Dose,M. Fursdon, F. Gallay, H. Greuner, K. Hunger, A. Lukenskas,A.v. Müller,M. Richou,S. Roccella,C. Vorpahl,K. Zhang

Journal of Nuclear Materials(2021)

引用 34|浏览26
暂无评分
摘要
Divertor target is one of the most critical in-vessel components in a fusion power plant being in charge of particle and power exhaust. The targets are exposed to severe thermal loads produced by steady bombardment of impinging plasma flux. Since 2014, integrated R&D efforts have been continued aiming at developing a design concept and high-heat-flux (HHF) technologies for divertor targets of the European DEMO reactor. Recently, the second round (2017–2019) of the R&D program has been concluded. As in the first R&D round, five water-cooled target design concepts were further developed and evaluated. Fabrication technologies were improved reaching a consolidated production quality. Extensive HHF tests were conducted using small-scale mock-ups for extended loading regimes (heat flux: 20–32MW/m²). Comparative studies were performed to investigate effects of copper interlayer thickness (0.1–1 mm) and different tungsten armor materials. In the present paper, the final results of the second round HHF testing campaign are reported. The HHF performance of each design variant is discussed based on in-situ diagnostic data (infrared thermography), ultrasonic inspection images and postmortem metallographic micrographs. All monoblock-type design concepts passed the specified qualification criterion (≥500 pulses at 20 MW/m², coolant: 130 °C) without any failure or armor cracking. Moreover, two of them (ITER-like and composite pipe) remained fully intact even under 25 MW/m² (100 pulses) and 32 MW/m² (5 pulses).
更多
查看译文
关键词
Fusion reactor,Demo,Divertor,Vertical target,High heat flux,Tungsten monoblock
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要