Recent Research On The Luminous Mechanism, Synthetic Strategies, And Applications Of Cuins2 Quantum Dots

INORGANIC CHEMISTRY FRONTIERS(2021)

引用 26|浏览3
暂无评分
摘要
Copper indium sulfide colloidal quantum dots (CuInS2 QDs) have drawn lots of attention in recent years, due to their traits of nontoxic elements, low synthesis cost, and easily tunable bandgap. CuInS2 is a direct semiconductor with the bulk bandgap between 1.45 eV and 1.53 eV. The emitting wavelength of CuInS2 QDs can be tuned by their size or composition, covering a range from visible to near-infrared (NIR). Besides, CuInS2 QDs possess a high absorption coefficient (similar to 10(5) cm(-1)) which makes it an interesting candidate for solar energy conversion applications. However, as a kind of versatile "green" materials, the property of CuInS2 QDs is still at a low level compared to well-studied Cd-based or InP QDs. In this review, we first discuss the research of the luminescence mechanisms of CuInS2 QDs. Then, we summarize the methods to synthesize CuInS2 QDs and the strategies to improve their luminous performances and stability developed recently. Also, we introduce the potential applications of CuInS2 QDs in light-emitting devices, solar energy conversion, and the biomedical field. Finally, we propose the existing issues and further prospects of CuInS2 QDs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要