谷歌浏览器插件
订阅小程序
在清言上使用

Data Driven Estimation Of Electric Vehicle Battery State-Of-Charge Informed By Automotive Simulations And Multi-Physics Modeling

JOURNAL OF POWER SOURCES(2021)

引用 60|浏览12
暂无评分
摘要
State-of-charge (SOC) estimation in a lithium-ion battery (LIB) is a crucial task of the battery management system (BMS) in battery electric vehicle (BEV) applications. In this work, we propose a modeling framework for SOC estimation using different machine learning (ML) methods, i.e. support vector regressor (SVR), artificial neural network (ANN), and long-short term memory (LSTM) network. The necessary training data have been developed using Matlab/Simulink automotive simulations of BEV, integrated with an electrochemical Comsol Multiphysics model of LIBs. The developed multi-physics model of BEV and LIBs operation allows to investigate the effect of driving conditions on the electrochemical and degradation (i.e., the solid electrolyte interphase - SEI - formation and decomposition) processes occurring inside batteries of different chemistries adopted in the Tesla S and Nissan Leaf BEVs. Our study remarks also the importance of taking into account the different components of BEV in the development of informative datasets, which are required for the implementation of learning algorithms for SOC evaluation. Thus, the proposed work establishes a basis for the generation of realistic training data based on simulations of BEV and LIBs dynamic response, which allows a more precise SOC estimation based on data driven approaches.
更多
查看译文
关键词
State-of-charge (SOC), Battery electric vehicles (BEVs), Automotive simulations, Electrochemical-thermal modeling, Machine learning (ML), Deep learning (DL)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要