Renewable Integration in Hybrid AC/DC Systems Using a Multi-Port Autonomous Reconfigurable Solar Power Plant (MARS)

IEEE Transactions on Power Systems(2021)

引用 21|浏览7
暂无评分
摘要
As the penetration of utility-scale solar photovoltaic (PV) power plants increases, the inertia in the system is reduced and there will be increased primary frequency response requirements. To increase inertia and improve the primary frequency response, grid-forming inverters connecting PV to grid and energy storage systems (ESSs) may play an important role. Moreover, high-voltage direct current (HVdc) links can also be an enabler to transfer remote PV power generation and to improve grid stability. That is, with increased penetration of PV, discrete development of PV and ESS connecting to transmission ac grid and HVdc links is one of the solutions for stable operation of the grid. In this paper, an integrated concept for integration of PV and ESS to transmission ac grid and HVdc links is proposed that is named as multi-port autonomous reconfigurable solar power plant (MARS). The integrated development incorporates advanced control methods to provide inertial and primary frequency response, reactive power support, and transient stability to manage PV and ESS resources. In this paper, high-fidelity switched system model of the integrated system and grids are developed and detailed simulation results are provided to showcase the stable operation of the integrated system and provision of grid support functions.
更多
查看译文
关键词
Electromagnetic transient simulation of hybrid PV.,energy storage system,multi-port power electronics,virtual synchronous generator (VSG),photovoltaic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要