Chrome Extension
WeChat Mini Program
Use on ChatGLM

A highly selective and potent hpk1 inhibitor enhances immune cell activation and induces robust tumor growth inhibition in a murine syngeneic tumor model

David Ciccone, Vad Lazari, Ian Linney, Michael Briggs, Samantha Carreiro, Joshua McElwee, Ian Waddell, Chris Hill, Christine Loh, Peter Tummino, Alan Collis, Neelu Kaila

JOURNAL FOR IMMUNOTHERAPY OF CANCER(2020)

Cited 2|Views9
No score
Abstract
Background HPK1, a member of the MAP4K family of protein serine/threonine kinases, is involved in regulating signal transduction cascades in cells of hematopoietic origin. Recent data from HPK1 knockout animals and kinase-inactive knock-in animals underscores the role of HPK1 in negatively regulating immune cell activation. This negative-feedback role of HPK1 combined with its restricted expression in cells of hematopoietic origin, make it a compelling drug target for enhancing anti-tumor immunity. Methods A structure-based drug design approach was used to identify potent and selective inhibitors of HPK1. Biochemical assays, as well as primary human and mouse immune cell-based activation assays, were utilized for multiple iterations of structure-activity relationship (SAR) studies. In vivo efficacy, target engagement and pharmacodynamic data were generated using murine syngeneic tumor models. Results A highly potent, HPK1 inhibitor was identified, that showed high selectivity against T cell-specific kinases and kinases in the MAP4K family. In vitro, HPK1 small molecule inhibition resulted in enhanced IL-2 production in primary mouse and human T cells, enhanced IL-6 and IgG production in primary human B cells, and enhanced mouse dendritic cell activation and antigen presentation capacity. Furthermore, HPK1 inhibition alleviated the immuno-suppressive effects of PGE2 on naive human T cells and restored the proliferative capacity of exhausted human T cells. In vivo, HPK1 inhibitionHPK1 inhibition abrogated T cell receptor-stimulated phospho-SLP-76, enhanced cytokine production, and mediated robust tumor growth inhibition in a murine syngeneic tumor model. Conclusions Pharmacological blockade of HPK1 kinase activity represents a novel and potentially valuable immunomodulatory approach for anti-tumor immunity.
More
Translated text
Key words
MEK Inhibition
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined