Neuronal Differentiation of Induced Pluripotent Stem Cells from Schizophrenia Patients in Two-Dimensional and in Three-Dimensional Cultures Reveals Increased Expression of the Kv4.2 Subunit Dipeptidyl Peptidase-Like Protein 6 That Contributes to Decreased Neuronal Activity.

Stem Cells and Development(2020)

引用 0|浏览4
暂无评分
摘要
Although the molecular underpinnings of schizophrenia (SZ) are still incompletely understood, deficits in synaptic activity and neuronal connectivity have been identified as core pathomechanisms of SZ and other neuropsychiatric disorders. In this study, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts from healthy donors and patients diagnosed with idiopathic SZ. We differentiated the human iPSC into cortical neurons both as adherent monolayers and as three-dimensional spheroids. RNA sequencing revealed little overlap in differentially expressed genes between 2D and 3D neuron cultures from SZ iPSC compared with controls. Notably, mRNA transcripts encoding dipeptidyl peptidase-like protein 6 (DPP6), an accessory subunit of Kv4.2 voltage-gated potassium channels, were massively increased in cortical neurons from SZ iPSC in the 2D and 3D model. Consistently, multielectrode array recordings and calcium imaging showed significantly decreased neuronal activity both in 2D and in 3D cultures from SZ neurons. To show a causal relationship, we treated iPSC-derived neurons in 2D cultures with lentiviral DPP6 shRNA vectors and the Kv4.2 channel blocker AmmTx3, respectively. Both treatments successfully reversed neuronal hypoexcitability and hypoactivity in cortical neurons from SZ iPSC. Our data highlight a contribution of DPP6 and Kv4.2 to the deficit in neurotransmission in an iPSC model for SZ, which may be of therapeutic relevance for a subset of SZ patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要