Directly Conversion The Biomass-Waste To Si/C Composite Anode Materials For Advanced Lithium Ion Batteries

CHINESE CHEMICAL LETTERS(2021)

引用 23|浏览11
暂无评分
摘要
The necessity to explore high-efficiency and high-value utilization strategy for biomass-waste is desirable. Herein, the strategy for direct conversion biomass-waste (rice husks) to Si/C composite structure anode was built. The Si/C composite materials were successfully obtained via the typical thermal reduction with magnesium, and the Si nanoparticle was uniformly embedded in carbon frame, as revealed by Raman, X-ray diffraction (XRD) and transmission electron microscope (TEM) measurement. The carbon structure among rice husks was effectively used as a protective layer to accommodate the volume variation of Si anode during the repeated lithiation/delithiation process. Benefitting from the structure design, the batteries show a superior electrochemical stability with the capacity retention rate above 90% after 150 cycles at the charge/discharge rate of 0.5 C (1 C = 600 mAh/g), and hold a high charge capacity of 420.7 mAh/g at the rate of 3 C. Therefore, our finding not only provides a promising design strategy for directly conversion biomass-waste to electrochemical storage materials but broadens the high-efficiency utilization method for other biomass by-products. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Biomass-waste, Rice husks, Composite anode, Lithium ion batteries, High energy density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要