Simultaneous improvement of plasticity and strength of metallic glasses by tailoring residual stress: Role of stress gradient on shear banding

Materials & Design(2021)

引用 12|浏览19
暂无评分
摘要
Inducing residual stress in metallic glasses (MGs) is recognized to be beneficial for plasticity but the mechanisms on how it affects shear band nucleation, propagation and multiplication remain poorly understood. With the aid of experimental and computational approaches, we address this issue by comparatively studying the deformation behavior of two types of MG samples, which were individually prepared by surface imprinting and photo-chemical etching but having similar surface patterns. Results showed that the imprinted MGs exhibit simultaneously enhanced plasticity and compressive strength, while the etched ones show limited plasticity improvement and reduced strength. The enhanced mechanical properties of the imprinted MGs are attributed to the compressive residual stresses generated near the surfaces, rather than the resultant geometrical pits. Finite element analysis revealed that the residual stress induces obvious stress gradient and inhomogeneous plastic deformation, which facilitate heterogeneous nucleation of multiple shear bands near the surfaces. Complementary atomistic simulations further revealed that the stress gradient resulting from the residual stress slows down the shear banding dynamics and causes deflection and branching, which consequently promotes shear band multiplication during propagation. This work uncovers the interactions between the residual stresses and shear bands, which are useful for processing MGs with desirable mechanical properties.
更多
查看译文
关键词
Metallic glasses,Residual stress,Surface imprinting,Mechanical properties,Shear banding behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要