Divertor heat flux challenge and mitigation in SPARC

JOURNAL OF PLASMA PHYSICS(2020)

引用 41|浏览60
暂无评分
摘要
Owing to its high magnetic field, high power, and compact size, the SPARC experiment will operate with divertor conditions at or above those expected in reactor-class tokamaks. Power exhaust at this scale remains one of the key challenges for practical fusion energy. Based on empirical scalings, the peak unmitigated divertor parallel heat flux is projected to be greater than 10 GW m(-2). This is nearly an order of magnitude higher than has been demonstrated to date. Furthermore, the divertor parallel Edge-Localized Mode (ELM) energy fluence projections (similar to 11-34 MJ m(-2)) are comparable with those for ITER. However, the relatively short pulse length (similar to 25 s pulse, with a similar to 10 s flat top) provides the opportunity to consider mitigation schemes unsuited to long-pulse devices including ITER and reactors. The baseline scenario for SPARC employs a similar to 1 Hz strike point sweep to spread the heat flux over a large divertor target surface area to keep tile surface temperatures within tolerable levels without the use of active divertor cooling systems. In addition, SPARC operation presents a unique opportunity to study divertor heat exhaust mitigation at reactor-level plasma densities and power fluxes. Not only will SPARC test the limits of current experimental scalings and serve for benchmarking theoretical models in reactor regimes, it is also being designed to enable the assessment of long-legged and X-point target advanced divertor magnetic configurations. Experimental results from SPARC will be crucial to reducing risk for a fusion pilot plant divertor design.
更多
查看译文
关键词
plasma devices,fusion plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要