谷歌浏览器插件
订阅小程序
在清言上使用

Constraints on the Efficiency of Engineered Electromicrobial Production

Joule(2020)

引用 33|浏览23
暂无评分
摘要
Electromicrobial production aims to combine electricity and microbial metabolism for solar and electrical energy storage. We have constructed molecule to reactor models of highly engineered electromicrobial production systems that use H2 oxidation and direct electron transfer (DET). We predict electrical-to-biofuel conversion efficiency could rise to 52% with engineered in vivo CO2 fixation. H2 diffusion at ambient pressure requires areas 20 to 2,000 times the solar photovoltaic (PV) area supplying the system. Agitation can reduce this below the PV area, and the power needed is negligible when storing ≥1.1 megawatts. DET systems can be built with areas ≤ 15 times the PV area and have low energy losses even with natural conductive biofilms and can be even smaller if the conductivity could be raised to match conductive artificial polymers. Schemes that use electrochemical CO2 reduction could achieve efficiencies of almost 50% with no complications of O2 sensitivity.
更多
查看译文
关键词
electromicrobial production,microbial electrosynthesis,biofuels,synthetic biology,systems biology,carbon dioxide fixation,electricity storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要