Mineral chemistry of gahnite from the Lalor metamorphosed VHMS deposit, Snow Lake, Manitoba

CANADIAN MINERALOGIST(2020)

引用 1|浏览0
暂无评分
摘要
Gahnite (ZnAl2O4) is a common accessory mineral at the Lalor auriferous Zn-Cu metamorphosed VHMS deposit (Snow Lake, Manitoba). To evaluate factors influencing its crystal chemistry, gahnite representing a range of textures, host mineral assemblages, and whole-rock compositions were analyzed for major, minor, and trace elements. The analyzed grains span the range of Ghn63-75Her15-22Sp110-18 and are un-zoned with respect to Zn, Fe, and Mg. A moderate positive correlation exists between Mg in gahnite and whole-rock MgO (R-2 = 0.66). The minor- and trace-element chemistry of the Lalor gahnite is dominated by Mn (400-2600 ppm), Si (<25-250 ppm), and V (<25-2300 ppm). Based on the limited variability in gahnite major-element composition, as well as similar partitioning coefficients of Zn and Fe between sphalerite-gahnite pairs (indicating comparable metamorphic conditions of crystallization for the analyzed gahnite), metamorphic grade is interpreted to have had the strongest influence on gahnite major-element chemistry. Most sphalerite occurs with pyrite and pyrrhotite, an assemblage that would have buffered fS(2) and fixed the Zn:Fe ratio in sphalerite, which also could have contributed to the narrow compositional range observed in gahnite. Magnesium was not an essential component of the sphalerite-consuming, gahnite-producing reactions, so its concentration in gahnite was more readily affected by whole-rock Mg. A small proportion of gahnite grains may have formed from the destabilization of silicates (staurolite and biotite), rather than sphalerite. These possible gahnite-forming reactions (sphalerite- versus biotite- or staurolite-consuming) appear to have had the strongest control on gahnite minor- and trace-element chemistry, as gahnite formed from sphalerite desulfidation reactions shows a range in Mn (450-2600 ppm) and restricted V/Mn values (<0.5), while gahnite interpreted to have formed from the dehydration of biotite and staurolite shows restricted Mn (<430 ppm) and a range of V/Mn values (0.75-5.5). Further work is recommended to investigate the possibility of using gahnite trace-element signatures (such as with Mn and V) to discriminate between gahnite that crystallized in sphalerite-rich and sphalerite-barren environments, as this concept has potential for application to exploration using detrital gahnite.
更多
查看译文
关键词
gahnite,mineral chemistry,metamorphosed VHMS deposits,detrital indicator minerals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要