Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethylamine

International Journal of Hydrogen Energy(2020)

Cited 23|Views0
No score
Abstract
In this paper, we report here the hydrogen storage capacity of activated carbon aerogel synthesized by ambient pressure drying using a new catalyst. The carbon aerogel (CA) has been synthesized by the sol-gel method using resorcinol (R) and formaldehyde (F). For drying of RF wet gel instead of expensive and unsafe supercritical process, we have used ambient pressure drying. To avoid shrinkage which may occur due to this mode of drying, instead of usual catalyst (C): Na2CO3, organic catalyst triethylamine (TEA), which is known to be a condensing agent has been used. In order to find out the effect of change of R/C ratio on hydrogen sorption, three different R/C namely CA 1000, CA 2000, and CA 3000 were taken. Structural and microstructural details have been studied employing XRD, SEM, TEM, nitrogen adsorption, FTIR, and Raman spectroscopy. TEM and nitrogen adsorption studies have revealed that aerogel with R/C 1000 exhibits a higher degree of micropore density. The hydrogen storage capacities for all R/C ratios have been determined. It has been found that carbon aerogel (CA) with R/C = 1000, exhibits the highest hydrogen adsorption capacity out of the three aerogels. At liquid nitrogen temperature, the hydrogen storage capacity of aerogel with R/C = 1000 for the as-synthesized and activated carbons have been found to be 4.00 wt % and 4.80 wt %. A viable reason for the occurrence of high hydrogen storage capacity at liquid nitrogen temperature for aerogel with R/C = 1000 has been put forward.
More
Translated text
Key words
Hydrogen storage,Adsorption,Carbon aerogel,Activated carbon aerogel,Ambient pressure drying
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined