Aln Mems Filters With Extremely High Bandwidth Widening Capability

MICROSYSTEMS & NANOENGINEERING(2020)

引用 49|浏览2
暂无评分
摘要
This paper presents radio frequency (RF) microelectromechanical system (MEMS) filters with extremely high bandwidth widening capability. The proposed filtering topologies include hybrid configurations consisting of piezoelectric MEMS resonators and surface-mounted lumped elements. The MEMS resonators set the center frequency and provide electromechanical coupling to construct the filters, while the lumped-element-based matching networks help widen the bandwidth (BW) and enhance the out-of-band rejection. Aluminum nitride (AlN) S0 Lamb wave resonators are then applied to the proposed filtering topologies. AlN S0 first- and second-order wideband filters are studied and have shown prominent performance. Finally, the AlN S0 first-order wideband filter is experimentally implemented and characterized. The demonstrated first-order filter shows a large fractional bandwidth (FBW) of 5.6% (achieved with a resonator coupling of 0.94%) and a low insertion loss (IL) of 1.84dB. The extracted bandwidth widening factor (BWF) is 6, which is approximately 12 times higher than those of the current ladder or lattice filtering topologies. This impressive bandwidth widening capability holds great potential for satisfying the stringent BW requirements of bands n77, n78, and n79 of 5G new radio (NR) and will overcome an outstanding technology hurdle in placing 5G NR into the marketplace.
更多
查看译文
关键词
Electrical and electronic engineering,NEMS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要