Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts

SUSTAINABILITY(2020)

Cited 14|Views4
No score
Abstract
A promising route to attain a reliable impact reduction of supply chain materials is based on considering circular economy approaches, such as material recycling strategies. This work aimed to evaluate potential benefits of recycling scenarios for steel, copper, aluminium and plastic materials to the battery manufacturing stage. Focused on this aim, the life cycle assessment (LCA) and the environmental externalities methodologies were applied to two battery study cases: lithium manganese oxide and vanadium redox flow (VRFB) batteries, based on a cradle-to-gate LCA approach. In general, the results provided an insight into the raw material handling route. Environmental impacts were diminished by more than 20% in almost all the indicators, due to the lower consumption of virgin materials related to the implemented recyclability route. Particularly, VRFB exhibited better recyclability ratio than the Li-ion battery. For the former, the key components were the periphery ones attaining around 70% of impact reduction by recycling steel. Components of the power subsystem were also relevant, reaching around 40% of environmental impact reduction by recycling plastic. The results also foresaw opportunities for membranes, key components of VRFB materials. Based on findings, recycling strategies may improve the total circularity performance and economic viability of the studied systems.
More
Translated text
Key words
recyclability,battery,life cycle assessment,environmental impact,resources,circular economy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined