PyCHAM (v1.3.4): a Python box model for simulating aerosol chambers

Geoscientific Model Development Discussions(2020)

Cited 0|Views23
No score
Abstract
Abstract. In this paper the CHemistry with Aerosol Microphysics in Python (PyCHAM) box model software for aerosol chambers is described and assessed against benchmark simulations for accuracy. The model solves the coupled system of ordinary differential equations for gas-phase chemistry, gas-particle partitioning and gas-wall partitioning. Additionally, it can solve for coagulation, nucleation and particle loss to walls. PyCHAM is open source, whilst the graphical user interface, modular structure, manual and suite of tests for troubleshooting and tracking the effect of modifications to individual modules have been designed for optimal usability. In this paper, the modelled processes are individually assessed against benchmark simulations, and key parameters described. Examples of output when processes are coupled are also provided. Sensitivity of individual processes to relevant parameters is illustrated along with convergence of model output with increasing temporal and spatial resolution. The latter sensitivity analysis informs our recommendations for model setup. Where appropriate, parameterisations for specific processes have been chosen for their general applicability with their rationale detailed here. It is intended that PyCHAM aids the design and analysis of aerosol chamber experiments, with comparison of simulations against observations allowing improvement of process understanding that can be transferred to ambient atmosphere simulations.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined