GRACE-FO precise orbit determination and gravity recovery

JOURNAL OF GEODESY(2020)

引用 36|浏览14
暂无评分
摘要
The gravity recovery and climate experiment follow-on (GRACE-FO) satellites, launched in May of 2018, are equipped with geodetic quality GPS receivers for precise orbit determination (POD) and gravity recovery. The primary objective of the GRACE-FO mission is to map the time-variable and mean gravity field of the Earth. To achieve this goal, both GRACE-FO satellites are additionally equipped with a K-band ranging (KBR) system, accelerometers and star trackers. Data processing strategies, data weighting approaches and impacts of observation types and rates are investigated in order to determine the most efficient approach for processing GRACE-FO multi-type data for precise orbit determination and gravity recovery. Two GPS observation types, un-differenced (UD) and double-differenced (DD) observations in general can be used for GPS-based POD and gravity recovery. The GRACE-FO KBR observations are mainly used for gravity recovery, but they can be also used for POD to improve the relative orbit accuracy. The main purpose of this paper is to study the impacts of the DD, UD and KBR observations on GRACE-FO POD and gravity recovery. The precise orbit accuracy is assessed using several tests, which include analysis of orbital fits, satellite laser ranging residuals, KBR range residuals and orbit comparisons. The gravity recovery is validated by comparing different gravity solutions through coefficient-wise comparison, degree difference variances and water height variations over the whole Earth and selected area and river basins.
更多
查看译文
关键词
GRACE-FO,GPS,KBR,SLR residuals,Precise orbit determination,Gravity recovery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要