Facile Macrocyclic Polyphenol Barrier Coatings for PDMS Microfluidic Devices

ADVANCED FUNCTIONAL MATERIALS(2020)

引用 13|浏览15
暂无评分
摘要
Soft lithography techniques using polydimethylsiloxane (PDMS) are a cornerstone of microfluidic microdevices and emerging technologies such as microphysiological systems (MPS). Most of these systems employ hydrophobic small molecules during either stem cell differentiation, drug screening, or organoid development. However, due to PDMS's structure and hydrophobicity, lipophilic molecules are strongly absorbed creating unpredictable concentrations of mitogens, drugs, differentiation factors, and analytes, which is a major limitation in its use for biological applications. In this study, several catechol-functionalized calix[4]arene based macrocyclic polyphenols (MPPs) are synthesized and coated on PDMS through a dip-coating or flow through process. One molecule, MPP5(cone), synthesized from catechol and resorcinol in its cone isomer form, increases the hydrophilicity of PDMS and drastically reduces the absorption of a number of hydrophobic drug surrogates, while preserving high oxygen permeability, good cell viability and function. However, simple rules of molecular absorption based on Log P are not observed, suggesting screening barrier coatings for PDMS with single probes is not sufficient. The coating procedure is easily translated to microfluidic devices by infusion through channels with a pump, and therefore should find use in applications where molecular absorption into PDMS is a significant problem.
更多
查看译文
关键词
coatings,drug absorption,microfluidic devices,microphysiological systems,organ on chip,PDMS,polyphenols
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要