Correlating Dynamic Microstructure To Observed Color In Electrophoretic Displays Via In Situ Small-Angle X-Ray Scattering

PHYSICAL REVIEW MATERIALS(2020)

引用 6|浏览25
暂无评分
摘要
Electrophoretic deposition (EPD) is an industrially relevant and scalable technique used to form particle deposits from colloidal suspensions. Highly concentrated particle suspensions generally prevent real-time in situ microscopy observations which limit the characterization of EPD films to ex situ, or postprocessed, laboratory techniques. For dynamic systems, such as tunable amorphous photonic crystals (APCs), only reversible deposits are formed during the EPD process. Since reversible deposits cannot be characterized with standard ex situ methods, the particle-particle and particle-field interactions that govern the displayed color and crystallinity of these systems are not well understood. Here, we present in situ small-angle x-ray scattering and UV-Vis techniques for measuring both the structural and optical response of an APC under applied electric fields. We also develop a computational model based on colloidal interactions to explain the observed change in the interparticle spacing of APCs due to the applied electric field which correlates to displayed color. Ultimately, this work provides a new in situ characterization method that could be expanded for other dynamic, tunable colloidal systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要