Molecular Bases of Mechanisms Accounting for Drug Resistance in Gastric Adenocarcinoma.

CANCERS(2020)

引用 33|浏览34
暂无评分
摘要
Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.
更多
查看译文
关键词
apoptosis,chemoresistance,DNA repair,epithelial-mesenchymal transition,gastric cancer,metabolism,refractoriness,stomach,transport,tumor environment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要