Detailed 3D Fault Representations for the 2019 Ridgecrest, California, Earthquake Sequence

BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA(2020)

引用 19|浏览6
暂无评分
摘要
We present new 3D source fault representations for the 2019 M 6.4 and M 7.1 Ridgecrest earthquake sequence. These representations are based on relocated hypocenter catalogs expanded by template matching and focal mechanisms for M 4 and larger events. Following the approach of Riesner et al. (2017), we generate reproducible 3D fault geometries by integrating hypocenter, nodal plane, and surface rupture trace constraints. We used the southwest-northeast-striking nodal plane of the 4 July 2019 M 6.4 event to constrain the initial representation of the southern Little Lake fault (SLLF), both in terms of location and orientation. The eastern Little Lake fault (ELLF) was constrained by the 5 July 2019 M 7.1 hypocenter and nodal planes of M 4 and larger aftershocks aligned with the main trend of the fault. The approach follows a defined workflow that assigns weights to a variety of geometric constraints. These main constraints have a high weight relative to that of individual hypocenters, ensuring that small aftershocks are applied as weaker constraints. The resulting fault planes can be considered averages of the hypocentral locations respecting nodal plane orientations. For the final representation we added detailed, fieldmapped rupture traces as strong constraints. The resulting fault representations are generally smooth but nonplanar and dip steeply. The SLLF and ELLF intersect at nearly right angles and cross on another. The ELLF representation is truncated at the Airport Lake fault to the north and the Garlock fault to the south, consistent with the aftershock pattern. The terminations of the SLLF representation are controlled by aftershock distribution. These new 3D fault representations are available as triangulated surface representations, and are being added to a Community Fault Model (CFM; Plesch et al., 2017, 2019; Nicholoson et al., 2019) for wider use and to derived products such as a CFM trace map and viewer (Su et al., 2019).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要