Synthesis, Biocompatibility And Gene Encapsulation Of Poly(2-Ethyl 2-Oxazoline)-Dioleoyl Phosphatidylethanolamine (Petox-Dope) And Post-Modifications With Peptides And Fluorescent Dye Coumarin

INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS(2021)

引用 13|浏览18
暂无评分
摘要
Liposome surface modifications serve great potential applications of liposomes, for instance, increasing stability, bioactive liposome conjugates, and targeted drug, gene, and image agent delivery. In this study, novel targeted lipopolymers, peptide 18/peptide 563-poly(2-ethyl-2-oxazoline)-dioleoylphosphatidyl-ethanolamine (P18/P563-PEtOx-DOPE), have been demonstrated to be successfully synthesized. The structures of P18/P563-PEtOx-DOPE were confirmed by FT-IR spectroscopy, GPC, and(1)H-NMR. In this strategy, poly(2-ethyl 2-oxazoline)-modified liposomes were firstly constructed with molecular weights of 3,500 and 5,800 Da. Then, we chose PEtOx(5800)-DOPE because it has been obtained better particle size (88.74 +/- 0.6816) according to the DLS results. Then, peptides- and dye-PEtOx lipid-based nanovesicle (LN) were prepared by peptide-18, peptide-563, and 7-mercapto-4-methyl coumarin. Genetic material (pDNA) was encapsulated into the liposomes and evaluated the encapsulation of plasmid DNA with migration by using agarose gel electrophoresis.In vitrocytotoxicity experiment results on prostate cancer and breast cancer cell lines, parallelly with the healthy prostate (PNT1A) and breast (MCF10A) epithelial cell lines, cells showed insignificant toxic effects. Thus, we can suggest a novel PEtOx phospholipid thanks to this article and its integration with ligands, which great potential for gene transfer system.
更多
查看译文
关键词
Breast cancer, cytotoxicity, DOPE, gene encapsulation, lipopolymer, liposome, peptide, PEtOx, prostate cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要