Chrome Extension
WeChat Mini Program
Use on ChatGLM

Quantitative analysis of calcium and fluorine by high-sensitivity low-energy ion scattering: Calcium fluoride

SURFACE AND INTERFACE ANALYSIS(2020)

Cited 2|Views5
No score
Abstract
Low-energy ion scattering (LEIS) probes the atomic composition of the outer surface. Well-defined reference samples are used for the quantitation. For elements like fluorine and calcium, it is not easy to find suitable, clean, and homogeneous references, since fluorine is a gas and calcium is a very reactive metal. In contrast to surface analytic techniques such as XPS, the extreme surface sensitivity of LEIS makes it difficult to use stable compounds like CaF(2)as reference, since these compounds are not homogeneous at the atomic scale. With LEIS, CaF(2)is not expected to show an atomic ratio F/Ca = 2.0. Thus, before CaF(2)can be used as reference, its atomic surface concentrations have to be determined. Here, 3-keV He(+)scattering by a LiF(001) single crystal, an evaporated layer of Ca, and a Cu foil are used as basic references. High-purity CaF(2)is available in two forms: a single crystal and a powder. For a practical reference, powders are preferred, since if bulk impurities segregate to the surface, they will be dispersed over a large surface area. It is found that both CaF2(111) and powder have similar F/Ca atomic ratios. This confirms the F termination for both samples. For the powder, the F and Ca signals are reduced by 0.77 +/- 0.03 in comparison with those for the single crystal. The atomic sensitivity factors and relative sensitivity factors have been determined for F, Ca, and Cu.
More
Translated text
Key words
Ca,calcium fluoride,Cu,LEIS,LiF(001),surface termination
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined