Chrome Extension
WeChat Mini Program
Use on ChatGLM

Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation

Yanming Fu, Ying-Rui Lu, Feng Ren, Zhuo Xing, Jie Chen, Penghui Guo, Way-Faung Pong, Chung-Li Dong, Liang Zhao, Shaohua Shen

SOLAR RRL(2020)

Cited 34|Views5
No score
Abstract
Hematite (alpha-Fe2O3) is a promising candidate as a semiconducting photoanode for photoelectrochemical (PEC) water splitting. However, its PEC performance is much limited by the sluggish charge transfer kinetics at the alpha-Fe2O3/electrolyte interface. Herein, an insulative metal oxide, hafnium dioxide (HfO2), is deposited on the surface of alpha-Fe2O3 to engineer the photoelectrode/electrolyte interfacial electronic structure. With the conformal HfO2 overlayer coating, the surface defects of alpha-Fe2O3 are effectively passivated, whereas the charge migration from alpha-Fe2O3 to the electrolyte is blocked by the continuous HfO2 overlayer, leading to a moderate PEC enhancement. In contrast, with HfO2 nanoparticles deposited, the photogenerated holes are not only effectively extracted from the bulk of alpha-Fe2O3 but are also promptly injected into the electrolyte for water oxidation, due to the reconfigurated surface electronic structure. Consequently, the HfO2 nanoparticles-decorated alpha-Fe2O3 photoanode achieves an onset potential cathodic shift by 180 mV and a 460% photocurrent density enhancement, reaching up to 1.20 mA cm(-2) at 1.23 V versus reversible hydrogen electrode as compared with pristine alpha-Fe2O3. An alternative approach to engineer the photoelectrode/electrolyte interfacial electronic structure to improve the PEC performance for water splitting is demonstrated herein.
More
Translated text
Key words
hafnium dioxide,hematites,photoelectrochemical water splitting,surface electronic structure reconfigurations
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined