Validation of CERES Flight Model 5 in-orbit calibrations using lunar observations

Proceedings of SPIE(2019)

引用 0|浏览1
暂无评分
摘要
Scientific studies require radiation fluxes over the Earth to be accurate within 1% for shortwave fluxes and 0.5% for outgoing longwave fluxes. The validation of in-orbit instrument performance requires both stability in calibration source and also calibration corrections to compensate for instrument changes. The Moon offers an external source whose signal variance is predictable and non-degrading. CERES detectors register the signal output from the entire face of the Moon. Lunar observations performed by CERES Flight Models (FM) 1 through 4 have been successful in assisting validation of radiances to the required accuracy. CERES Flight Model 5 (FM-5) is on Suomi/NPP spacecraft, orbiting since October 2011. This paper uses lunar measurements to validate detector output of FM-5. These measurements are adjusted to remove orbital effects due to variations in distance between Moon and Sun, distance between the satellite and the Moon and lunar phase angle. These effects create a total variation in lunar irradiance of 20% in the total channel and 8% in the shortwave channel. The change in orientation of the Moon as seen by the detector is called libration and causes variations of about 1% of the irradiance. A consistent dataset spanning at least 2 years in length is required to remove variations due to libration. The major uncertainties remaining in the measurements are assumed to be due to changes of the spectral responses of the channels due to degradation of optical surfaces in orbit. The results demonstrate that lunar observations can be used to validate FM-5 measurements.
更多
查看译文
关键词
Clouds and Earth Radiant Energy System,Earth radiation budget,lunar measurements,radiometry,remote measurements,calibration,validation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要