谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Robust Trajectory Execution for Multi-robot Teams Using Distributed Real-time Replanning.

DARS(2019)

引用 10|浏览36
暂无评分
摘要
Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要