Clean version: Electrospun fibrinogen scaffolds from discarded blood for wound healing

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS(2021)

引用 4|浏览13
暂无评分
摘要
Immediate reutilization of discarded blood from surgery has not received much attention, leading to the waste of a large amount of autologous blood. We used a concentration gradient and high-voltage electrospinning technology to immediately prepare a scaffold material with high biological activity but without immunogenicity from autologous waste blood collected during surgery. Here, we fabricated and characterized a 90 mg/mL group, 110 mg/mL group, and 130 mg/mL group of fibrinogen (FBG) scaffolds. Analyses revealed that the FBG scaffolds had good film-forming properties and a clear fiber structure. in vitro cell viability experiments confirmed that the cells showed an increasing trend with increasing FBG concentrations. The cells grew well in the scaffold material and secreted more cell matrix. When human bone mesenchymal stem cells (hBMSCs) were cocultured with the scaffold material, the hBMSCs expressed osteogenic and chondrogenic biomarkers. The cellular scaffold complexes from the 3 groups were implanted in four full-thickness round wounds (phi 12 mm) on the dorsal back of each rat, the 130 mg/mL group showed a 90% reduction in wound size and the data compared to other groups were better at 14 day. These results suggest that electrospinning technology-based FBG scaffold materials derived from autologous waste blood may become an ideal tissue engineering scaffold and can be immediately used for autologous hemostasis, anti-adhesion films, and wound dressing in surgery.
更多
查看译文
关键词
biomaterials,electrospinning,fibrinogen,tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要