Automated assessment of longitudinal biomarker changes at abdominal CT: correlation with subsequent cardiovascular events in an asymptomatic adult screening cohort

ABDOMINAL RADIOLOGY(2021)

引用 5|浏览40
暂无评分
摘要
Background Cardiovascular (CV) disease is a major public health concern, and automated methods can potentially capture relevant longitudinal changes on CT for opportunistic CV screening purposes. Methods Fully-automated and validated algorithms that quantify abdominal fat, muscle, bone, liver, and aortic calcium were retrospectively applied to a longitudinal adult screening cohort undergoing serial non-contrast CT examination between 2005 and 2016. Downstream major adverse events (MI/CVA/CHF/death) were identified via algorithmic EHR search. Logistic regression, ROC curve, and Cox survival analyses assessed for associations between changes in CT variables and adverse events. Results Final cohort included 1949 adults (942 M/1007F; mean age, 56.2 ± 6.2 years at initial CT). Mean interval between CT scans was 5.8 ± 2.0 years. Mean clinical follow-up interval from initial CT was 10.4 ± 2.7 years. Major CV events occurred after follow-up CT in 230 total subjects (11.8%). Mean change in aortic calcium Agatston score was significantly higher in CV(+) cohort (591.6 ± 1095.3 vs. 261.1 ± 764.3), as was annualized Agatston change (120.5 ± 263.6 vs. 46.7 ± 143.9) ( p < 0.001 for both). 5-year area under the ROC curve (AUC) for Agatston change was 0.611. Hazard ratio for Agatston score change > 500 was 2.8 (95% CI 1.5–4.0) relative to < 500. Agatston score change was the only significant univariate CT biomarker in the survival analysis. Changes in fat and bone measures added no meaningful prediction. Conclusion Interval change in automated CT-based abdominal aortic calcium load represents a promising predictive longitudinal tool for assessing cardiovascular and mortality risks. Changes in other body composition measures were less predictive of adverse events.
更多
查看译文
关键词
Cardiovascular disease,Imaging biomarkers,Agatston score,Machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要